01
根据Fortune Business Insights的数据,2020年,全球医学影像市场规模为361.9亿美元,预计从2021年的379.7亿美元(约2525亿人民币)增长到2028年的565.3亿美元。
按设备类型,2020年X射线设备占比最高,约33%市场份额(主要源自使用C型臂进行术中图像引导的市场需求),其次是MRI设备,CT设备,超声设备和分子成像。
按应用分析,2020年骨科疾病占比较高,其次是肿瘤学、心脏病学、妇科、神经病学等。
(一)影像设备增长的驱动因素
1.影像诊断需求不断增加
人口老龄化和生活方式带来的心血管、神经类、骨科、糖尿病等慢性疾病发病率的上升;
人类对健康的重视,对疾病早期诊断的习惯形成等;
政府更加重视普及早期诊断,以早诊早治,降低医保费用支出,均推动了诊断成像的需求
2. 新的技术进步和迭代带来的设备升级换代
引进技术先进的成像设备是刺激市场增长的主要因素之一。在发达国家,越来越多地使用先进的人工智能诊断设备进行快速诊断和预测分析,是预计在预测期内导致产品需求增长的主要因素之一。
目前,影像设备厂商正在引入Al技术到自家解决方案中。例如:
2019年10月,西门子医疗推出的超声系统Acuson Redwood,该系统为放射科、心脏病学和妇产科等临床部门提供成像解决方案。便携轻便,具有多个基于人工智能(Al)的工县,用于智能工作流程和心脏病学功能。
2020年5月,富士胶片株式会社推出了基于人工智能的肺结节检测新技术。该技术用于胸部CT扫描中肺结节的检测,以帮助肺癌诊断。
2020年12月,Hologic的Genius Al检测技术获批FDA,用于乳腺癌的早期检测。
2020年11月,佳能医疗系统公司推出了One-Beat光谱心脏CT,具有快速kVp切换和深度学习光谱重建功能,可在一次心跳中获取全心光谱图像。预计推出几种新产品将刺激需求,从而推动市场增长。
2021年1月,飞利浦以6.35亿美元收购了美国Capsule Technologies公司。其主要产品是医疗设备信息平台,包括设备集成、生命体征监测和临床监测服务,系统能够连接几乎所有在用医疗设备和EMR,并捕获临床数据信息流,对患者进行可行性管理。
2021年7月,GE医疗发布一站式、跨品牌的集成AI应用平台 爱迪生魔盒,等等。
3. 政府对医疗基础设施的投入、及扶持行业的资金,特别是在印度等发展中国家
4. 教学医院和大学对最先进的成像模式的需求也在不断增加,以提供先进技术的培训
例如,西门子医疗的7T MRI系统,MAGNETOM Terra,以前仅在美国安装,但目前以色列的Hadassah-Hebrew University医学中心Wohl转化医学研究所也引入了这种教学科研大型设备。泰国、印度和韩国等国家也安装了多台3.5T MRI系统。
(二)疫情对医学影像市场的影响
整体而言,疫情对全球市场产生了负面影响。由于患者就诊人数大幅下降,对磁共振成像(MRI)系统和分子成像设备的需求受到严重阻碍。GE医疗、飞利浦、西门子等主要影像厂商称2020年相应收入下降。比如,飞利浦诊断成像部门在2020年的收入比2019年的收入下降了3.7%。除就诊人数,放射科推荐的指南也是最大限度减少接触类影像检查,以降低疫情传播可能性。
但疫情也对部分医学影像设备带来积极影响。比如:(1)便携式CT和X射线系统在2020年需求量激增,以更快地诊断新冠。(2)超声设备亦被广泛用于区分新冠和其他呼吸道疾病。(3)高分辨率CT扫描(HRCT)在通过胸部扫描诊断新冠患者方面的临床效率。(4)对频繁的胸部成像以监测疫情的长期影响的需求日益增加,推动了初级医学中心/基层医疗机构对影像设备的购买需求。
02
03
1. X线的发现及其命名
伟大的德国物理学家伦琴(1845-1923)于1895年11月8日下午,在黑暗的实验室里应用阴极射线管进行实验研究,偶然发现当阴极射线管放电时,放置在其旁边的荧光屏发出了可见光。实验中阴极射线管用不透光线的硬纸板遮挡,说明激发荧光屏发光的射线具有穿透性和荧光作用。为此,他又进行了深入的实验,发现该射线可使由不透光黑纸包裹的照相底片感光,为了验证其感光效应,伦琴为其夫人拍摄了佩戴结婚戒指手的照片,这就是人类第1张X线照片。经过多次重复实验后,他确信阴极射线管能发出一种肉眼看不见的射线.并用数学上未知数的最常用代号X,将其命名为X射线。
2. X线的诊断应用
1895年12月28日,在伦琴发表他的研究报告几周之后,这一消息就传遍了全世界。当时各国报纸都竞相转载,认为这是一个“科学的辉煌胜利”。由于伦琴夫人手的X线照片清楚显示了骨骼结构,使人类首次在活体透过皮肤观察到人体的内部结构。此后,数家国际著名厂商很快就生产出医用X线机,将x线用于全身各部位疾病的诊断,因而形成了诊断放射学。x线的发现开创了一个医学的新时代,伦琴亦因此获得首届诺贝尔物理学奖。
最初,X线诊断主要用于骨骼系统和胸部疾病的诊断。随后,人们发明向自然对比度不佳的部位引入对比剂,人为增加对比度的各种造影方法,进而能显示心血管系统、胃肠道、脊髓、脑室和脑池等结构,扩展了X线的临床应用领域,取得良一流的诊断效果,为现代医学影像学奠定了坚实的基础。
3. X线成像技术
1923年,Hevesy首先把核素示踪方法用于生物学研究;1925年,Blumgart第1次采用示踪方法测定了正常人及心脏病患者的血流速度。至20世纪50年代,出现伽玛闪烁成像(γ一scintigry)。1957年,HalAnger研制出第1台1闪烁照相机,使脏器动态显像和全身扫描一次成像成为可能。
4. 超声成像
超声成像 20世纪50~60年代,超声成像开始在临床应用。首先是A型超声仪,用于对肝脏病灶的测距,其次是用于心脏的M型超声仪,继之出现适用于全身各部位的B型超声仪,最后是多普勒及彩色血流显像。目前,超声成像以其无创伤、无射线、普及率高、价格低廉、便于床旁检查等优点,成为多种疾病的首选和筛选检查手段。
5. 计算机断层扫描
1971年,X线计算机体层摄影(CT)问世,首次将传统X线检查的直接成像转变为利用探测器接收X线,再由计算机辅助技术间接成像。CT打破了人脑形态学的黑箱,使原来看不见的脑组织结构在活体得以显示,因而被公认为医学影像学发展的里程碑。
20世纪80年代末出现的CT螺旋扫描技术,1998年发展为多层螺旋CT或者称多排螺旋CT,使数据采集加快。至2005年初,64排螺旋CT应用于临床,真正实现了容积数据采集,5s即可以完成心脏扫描,10s可获得整个人体的数据,所获图像的层厚更薄(亚毫米),一次扫描覆盖的范围更大(达4cm),可进行任意方位、层面的重建,加之具有强大的后处理功能,极大地扩展了CT在心血管领域的临床应用范围。
MDCT促进了T血管造影(CTA)的发展,尤其冠状动脉CTA能清楚显示冠状动脉的3或4级分支,可进行大范围血管成像,已经被广泛应用于临床,并获好评。CTA图像可从多角度观察,无死角,经静脉注射对比剂创伤小,检查快速,观察心脏大血管整体情况清楚,除显示血管外,还能同时显示血管壁的钙化、动脉硬化斑块及其组成成分,结合CT图像能综合判断血管周围的情况。此外,MDCT还能进行实质性器官的灌注和空腔脏器的仿真内镜检查。目前,CT扫描已经成为最重要的影像学检查方法。受CT成像原理的启发,1975年第一台正电子发射计算机体层摄影(PET)仪问世,1979年发明单光子发射计算机体层摄影(SPECT)仪,使核医学(NM)在组织器官血流、灌注、受体和代谢显像方面形成完整体系,在影像诊断中发挥重要作用。
6. 磁共振成像
磁共振成像 20世纪80年代初,磁共振成像(MRI)问世。经过20多年的发展,在传统MRI基础上,MRI已经有磁共振血管成像(MRA)、磁共振波谱(MRS)、磁共振弥散成像(MRDI)、磁共振灌注成像(MRPI)、功能磁共振成像(FMRI)、磁共振弥散张量成像(DTT)等新技术不断问世,使MRI成为重要的影像学检查方法之一。
7. 数字减影血管造影
值得一提的以及数字减影血管造影(DSA)。在20世纪70年代中期问世的DSA,使每次注入血管的对比剂用量大为减少,而血管显影的清晰度却有所提高,极大促进了介入放射学的发展,为介人影像学成为与传统内科化学药物治疗、外科手术治疗并列的第3大治疗方法奠定了坚实基础。
8. 计算机X线摄影
计算机X线摄影(CR:Computed radiography)在20世纪末至21世纪初,计算机摄影(CR)和直接数字摄影(DDR)开始临床应用,使普通放射摄影检查实现数字化;后者又简称为数字化摄影(DR)。由于在此之前,其他影像学检查已经都是数字化图像,CR和DR的问世极大推动了图像传输与存储系统(PACS)的临床应用,应用PACS可以将各种成像技术获取的数字化图像在硬盘、光盘、磁带等不同存储介质上存储、传输,有利于图像的长期保存和远程调阅,可避免图像丢失,并消除了由使用胶片所带来的环境污染问题。
---未完待续----